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Two new organic-inorganic hybrid compounds based on polyoxometalate building blocks,
[CuI(bpy)2]2{[Cu

II(bpy)]2PMoV3MoVI9 O40} (1), H[Cu(bpy)(H2O)]{[Cu(bpy)]4(PO4)2}{PW11

CuO39} �H2O (2) (bpy¼ 2,20-bipyridine), have been solvothermally synthesized and character-
ized by elemental analyses, IR, and TG analysis. Single crystal X-ray diffraction reveals that
1 is built from the reduced a-Keggin polyoxoanion [PMoV3MoVI9 O40]

6� bicapped by two
[CuII(bpy)]2þ through four bridging oxo groups on two opposite [Mo4O4] faces. 1 shows mild
photoluminescence in the solid state at room temperature. 2 is based on monovacant Keggin
anion {PW11CuO39}

5� linked through Cu(bpy)2þ andPO3�
4 , generating a one-dimensional

chain. Magnetism indicates predominantly antiferromagnetic interaction in 2.

Keywords: Polyoxometalates; Organic–inorganic hybrid material; Solvothermal synthesis;
One-dimensional chain; Magnetic property

1. Introduction

Polyoxometalates (POMs) [1], as early transition metal oxide clusters, have interest in
solid state materials chemistry due to their structural and compositional diversity and
potential applications in catalysis, sorption, ion exchange, optical, electro- and
magnetic materials [2]. Attention has been paid toward construction of organic–
inorganic materials based on POMs. Systematic structural design of composite
materials possessing unique structures and potentially useful magnetic and luminescent
properties remains extremely challenging. However, several successful strategies have
been developed to design such materials [3]. One utilizes polyoxometalates’s
coordination ability to produce polyoxoanion-supported or bridged by transition
metal or lanthanide cations under hydrothermal or solvothermal conditions, providing
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charge-compensation, space-filling, passivating and structure-directing roles [4]. Many
examples have been explored, including discrete clusters [5], one-dimensional chains [6],
two-dimensional networks [7] and three-dimensional frameworks [8].

Especially, Zubieta’s and Wang’s groups have reported series of such hybrid
materials consisting of polyoxomolybdate and phosphomolybdate clusters attached to
various transition metal complexes such as [Ni(phen)3][PMoVI9 MoV3 O40{Ni(phen)}2]
[5b], [Cu(phen)]2[V

IVVV
4 As2O19] � 0.5H2O [7a], Na2[{Mn(phen)2(H2O)}{Mn(phen)2}3

{MnMo12O24(HPO4)6(PO4)(OH)6}] � 4H2O [7b], [{Cu3(trz)2}V4O12] [8a] etc.
We reported two compounds based on the {P2Mo5} clusters linked by copper
complexes, [Cu(phen)(H2O)]3[(PO4)2Mo5O15] � 5H2O and HNa[Cu(bpy)(H2O)]2
[(PO4)2Mo5O15] � 6H2O, with one-dimensional chains [6d]. Herein, we present syntheses
and structures of two compounds based on polyoxometalate building blocks,
[CuI(bpy)2]2{[Cu

II(bpy)]2 PMoV3MoVI9 O40} (1) and H[Cu(bpy)(H2O)]{[Cu(bpy)]4
(PO4)2}{PW11CuO39} �H2O (2).

2. Experimental

2.1. Materials and methods

All chemicals were purchased from commercial sources and used without further
purification. Elemental analyses (C, N, and H) were performed on a Perkin-Elmer
2400 elemental analyzer and P, Cu, W and Mo were analyzed on a PLASMA-SPEC
ICP atomic emission spectrometer. FT-IR spectra were recorded in the range 4000–
400 cm�1 on an EQUINOX-55 spectrometer using KBr pellets. Thermal gravimetric
analyses (TGA) were performed on a Perkin-Elmer TGA7 instrument in flowing N2

with a heating rate of 10�Cmin�1. XPS analysis was performed on a VG Scientific
ESCALab220i-XL spectrometer with an Al Ka achromatic X-ray source. Binding
energies were referenced to the C1s line at 284.8 eV from adventitious carbon.
Excitation and emission spectra were obtained on a RF-5301PC spectrofluorometer
equipped with a 450W xenon lamp as the excitation source, and the measurements
were performed at room temperature. Variable-temperature magnetic susceptibility
data were obtained on a SQUID magnetometer (Quantum Design, MPMS-7) in the
temperature range 2–300K at 1000Oe. Samples for the magnetic measurements were
ground into powder in order to avoid anisotropy effects.

2.2. Synthesis

2.2.1. Preparation of [CuI(bpy)2]2{[Cu
II(bpy)]2PMoV3MoVI9 �O40} (1). A mixture

of Na2MoO4 � 2H2O (1.115 g, 4.61mmol), CuCl2 � 2H2O (0.323 g, 1.89mmol),
2,20-bipyridine (0.183 g, 1.17mmol), oxalic acid (C2H4O2 � 2H2O) (0.138 g, 1.44mmol),
H3PO4 (85%) (0.470 g), H2O (15mL), and CH3OH (15mL) was stirred (the initial pH
value was adjusted to 3–4 with 2M HCl) and then sealed in a 50mL Teflon-lined
autoclave, which was heated at 140�C for two days. After slow cooling to room
temperature, black block crystals of 1 were obtained in 40% yield (based on Cu).
The elemental analyses found (%): Cu, 8.56; P, 1.25; Mo, 38.02; C, 23.32; H, 2.01;
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N, 5.97. Anal. Calcd: Cu, 8.43; P, 1.03; Mo, 38.20; C, 23.91; H, 1.61; N, 5.58. Selected
FT-IR data (KBr, cm�1): 491(m), 763(m), 945(s), 1029(m), 1057(m), 1174(m), 1311(m),
1439(m), 1597(m), 3448(w).

2.2.2. Preparation of H[Cu(bpy)(H2O)]{[Cu(bpy)]4(PO4)2}{PW11CuO39} � H2O (2).

Compound 2 was prepared by a procedure similar to that for 1, but with
Na2WO4 � 2H2O (1.24 g, 3.76mmol), 2,20-bipyridine (0.233 g, 1.49mmol) and
Cu(NO3)2 � 6H2O (0.360 g, 1.22mmol) (the initial pH value was adjusted to 2–3 with
85% H3PO4). Yield: 60% (based on Cu). The elemental analyses found (%): Cu, 8.99;
P, 2.87; W, 49.03; C, 14.21; H, 1.32; N, 3.03. Anal. Calcd: Cu, 9.38; P, 2.29; W, 49.73; C,
14.77; H, 1.12; N, 3.44. Selected FT-IR data (KBr, cm�1): 520(m), 814(s), 882(m),
957(s), 1061(m), 1094(m), 1448(m), 1474(m), 1604(m), 3448(br).

2.3. X-ray crystallography

Intensity data collection was carried out with a Bruker Smart APEXII
diffractometer equipped with a CCD detector using Mo Ka monochromated
radiation (�¼ 0.71073 Å) at room temperature. All data were corrected for
absorption using SADABS [9]. The structure was solved by direct methods and
refined by full-matrix least-squares on F2 using the SHELXTL-97 software package
[10]. All non-hydrogen atoms in 1 and 2 were refined anisotropically. Positions of
hydrogen atoms attached to carbon were fixed at their ideal positions, and those
attached to oxygen could not be located. A summary of the crystallographic data
and structure determinations for 1 and 2 is provided in table 1. Selected bond
lengths and angles for 1 and 2 are listed in table 2.

Table 1. Crystal data and structure refinement of 1 and 2.

Compound 1 Compound 2

Empirical formula C60H48Cu4Mo12N12O40P C50H45Cu6N10O49P3W11

Formula weight 3013.53 4066.49
Crystal size (mm3) 0.42� 0.38� 0.12 0.42� 0.36� 0.24
Crystal system Monoclinic Monoclinic
Space group P2(1)/c P2(1)/n
Unit cell dimension (Å, �)

a 13.2629 (7) 15.7837 (5)
b 29.7181 (15) 24.1950 (7)
c 21.4910 (10) 21.4063 (7)
� 103.021 (2) 95.252 (2)

Volume (Å3), Z 8252.8 (7), 4 8140.5 (4), 4
Dcalcd (g cm�3) 2.425 3.315
� (mm�1), F (000) 2.878, 5788 17.164, 7344
Reflections collected 85278 84037
Unique reflections 20286 20310
Rint 0.0596 0.1013
Final R indices R1¼ 0.0542 R1¼ 0.0569
[I42� (I)]a wR2¼ 0.1089 wR2¼ 0.1323
R indices R1¼ 0.0968 R1¼ 0.1164
[all data] wR2¼ 0.1310 wR2¼ 0.1530
Goodness-of-fit on F2 1.033 1.032

aR1¼
P
kFo|�|Fck/

P
|Fo|; wR2¼ {

P
[wðF2

o � F2
c Þ

2]/
P

[wðF2
oÞ

2]}1/2.
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3. Results and discussion

3.1. Synthesis

The isolation of 1 and 2 depended on solvothermal techniques [3–8], because differential
solubilities of organic and inorganic precursors can be minimized. However, factors
such as temperature, starting materials, pressure, acidity, reactant stoichiometry, and
time of reaction can influence the reaction [4–8]. Parallel experiments show that starting
pH and the choice of starting materials are crucial for isolation of 1 and 2, which could
only be obtained in the pH range 3–4 and 2–3, respectively. At higher pH (5–7) no
crystal was formed except a mixture of powders, probably due to decomposition of the
polyanion at high pH. Oxalic acid is essential for preparation of 1, acting as a reducing
agent for Mo(VI) in the reagent to Mo(V). For 2, if Cu(NO3)2 � 6H2O was replaced by
CuCl2 � 2H2O, CuSO4 � 5H2O or CuAc2 � 2H2O in identical hydrothermal reaction
environments, we could not obtain 2.

3.2. Crystal structure

3.2.1. [CuI(bpy)2]2{[Cu
II(bpy)]2PMoV3MoVI9 O40} (1). The structure of 1 (figure 1)

consists of a bicapped bisupporting {[CuII(bpy)]2PMoV3MoVI9 O40}
2� heteropolyoxoa-

nion and two [CuI(bpy)2]
þ countercations. The polyoxoanion {[CuII(bpy)]2

PMoV3MoVI9 O40}
2� is composed of a reduced bicapped Keggin [PMoV3MoVI9 O40]

6�

and two [CuII(bpy)]2þ units linking to it through bridging oxo groups. As in other
well-known Keggin structures, the reduced polyoxoanion is constructed from a central

Table 2. Selected bond lengths (Å) and angles (�) for 1 and 2.

Compound 1

Cu(1)–O (17) 1.999 (4) O (37)–Mo (8)–O (22) 81.17 (17)
Cu (1)–N (2) 1.999 (5) Mo (1)–O (18)–Mo (2) 122.72 (19)
Cu (1)–O (18) 2.372 (4) Mo (4)–O (27)–Cu (2) 96.76 (17)
Mo (8)–O (22) 1.999 (4) Cu (1)–O (17)–Mo (9) 106.85 (18)
Mo (1)–O (18) 1.955 (4) Mo (9)–O (37)–Cu (1) 97.11 (17)
Cu (2)–O (32) 2.035 (4) Mo (11)–O (32)–Mo (6) 143.9 (2)
Cu (2)–O (40) 2.366 (4) Mo (1)–O (18)–Cu (1) 95.98 (17)
Cu (2)–N (3) 1.987 (5) Mo (8)–O (3)–Mo (7) 88.15 (13)
Mo (11)–O (40) 1.971 (4) P (1)–O (4)–Mo (12) 126.9 (2)
Mo (4)–O (27) 1.963 (4) O (4)–P (1)–O (3) 109.2 (2)
Cu (3)–N (5) 2.005 (7) O (27)–Cu (2)–O (40) 126.98 (13)
Cu (4)–N (9) 2.037 (7) N (4)–Cu (2)–O (27) 111.85 (18)
Compound 2a

Cu (1)–O (39) 1.983 (11) W (2)–O (39)–Cu (1) 118.5 (6)
Cu (2)–O (38) 2.311 (10) W (5)–O (9)–Cu (5) 159.0 (7)
Cu (3)–O (45)#1 1.906 (10) Cu (1)–O (39)–Cu (3) 114.5 (5)
Cu (4)–O (43)#2 1.901 (11) P (1)–O (1)–Cu (1) 120.4 (6)
Cu (5)–O (44) 1.985 (10) Cu (1)–O (1)–W (1) 87.1 (4)
Cu (6)–O (19)#2 2.356 (10) P (3)–O (44)–Cu (5) 125.5 (6)
W (5)–O (9) 1.733 (12) Cu (5)–O (44)–Cu (4) 115.1 (5)
W (2)–O (39) 1.809 (11) P (2)–O (40)–Cu (2) 109.5 (6)
P (2)–O (40) 1.531 (12) P (3)–O (46)–Cu (2)#2 130.2 (7)
P (3)–O (44) 1.574 (12) P (2)–O (43)–Cu (4)#1 128.7 (7)

Symmetry transformations used to generate equivalent atoms:
a: #1 xþ 1, y, z; #2 x�1, y, z.
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PO4 tetrahedron which shares its oxygens with four Mo3O13 groups, each of which is
made up of three edge-sharing MoO6 octahera. Valence sum calculations [11] give the
average value of 5.70 for Mo atoms (the expected average value for MoV3MoVI9 is 5.75),
showing 3 of 12 Mo atoms in þ5 oxidation state with three electrons delocalized within
the whole metal-oxide cluster. A typical feature of the structure is that the Keggin
polyoxoanion is capped by two [CuII(bpy)]2þ (Cu1, Cu2) through four bridging oxo
groups on two opposite {Mo4O4} faces, with Cu–O distance of 1.999(4)–2.372(4) Å
and Cu–N distance of 1.987(5)–2.001(5), forming a {CuO4N2} octahedron. However,
Cu(3, 4) ions are coordinated by four nitrogen atoms from two bpy ligands [Cu–N,
1.992(7)–2.052(8)], with a distorted tetrahedral geometry {CuN4}, as countercations in
the crystal structure. The valence sum calculations indicate that Cu(1, 2) and Cu(3, 4)
are þ2 and þ1, respectively. The CuI atom is commonly three- or four-coordinate,
while CuII is five- or six-coordinate.

3.2.2. H[Cu(bpy)(H2O)]{[Cu(bpy)]4(PO4)2}{PW11CuO39} �H2O (2). The basic build-
ing block of 2, shown in figure 2, is composed of one heteropolyoxoanion
{PW11CuO39}

5�, two PO3�
4 and five Cu(bpy)2þ ions. The valence sum calculations

confirm that all W and Cu atoms are þ6 and þ2. The heteropolyoxoanion
{PW11CuO39}

5� has Cu1 occupying the vacancy of a defective {PW11O39}
7� anion

and bound to the POM by five oxygen atoms (O1, O19, O33, O38, O39). As illustrated
in figure 3(a), an unusual structural feature of 2 is that the monovacant Keggin anion
{PW11CuO39}

5� is linked by five Cu(bpy)2þ and two PO3�
4 , generating a one-

dimensional chain. The coordination environments of Cu2þ and PO3�
4 are shown in

figure 3(b). One PO4 (P2) has a non-bonded terminal (O42), two �2 (O41, O43) and one
�3 (O40) oxygens. The other PO4 (P3) tetrahedron has two �2 (O45, O47) and two
�3 (O46, O44) oxygen atoms. According to their coordination-type, Cu atoms can be

Figure 1. The molecular structure of 1 [CuI is Cu(3) and Cu(4) whereas CuII is Cu(1) and Cu(2)]. Octahedra,
{MoO6}; Tetrahedra, {PO4}.
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divided into three groups: (i) Cu1 is a {CuO6} distorted octahedral geometry with five
oxygens from {PW11O39}

7� and one oxygen from PO3�
4 , with Cu–O distances of

1.938(11)–2.325(11) Å; (ii) Cu4 is four-coordinate, with two nitrogens from bpy and
two oxygens from different PO4 tetrahedra, with Cu–O distances 1.901(11)–2.018(10) Å
and Cu–N distance of 1.977(14)–1.980(14); (iii) Cu (2, 3, 5, 6) are coordinated by two
nitrogen atoms from bpy and three oxygen atoms, showing square-pyramidal geometry
in the form of {CuN2O3}, with Cu–O distance of 1.902(11)–2.356(10) Å and Cu–N
distance of 1.954(15)–2.034(14). Cu5 is bound to the terminal oxygen atom (O9) of the
POM, resulting in the one-dimensional chain in 2.

Figure 3. (a) View of the one-dimensional chain in 2; (b) the coordination environments of Cu(II) and PO3�
4

in 2. All C and H atoms are omitted for clarity.

Figure 2. The basic building block of 2. H atoms and lattice water are omitted for clarity. Octahedra,
{WO6}; Tetrahedra, {PO4}.
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3.3. Thermal analysis and IR spectra

The thermal gravimetric analysis (TGA) of 1 shows two weight losses. The first in the
temperature range 331–523�C corresponds to release of four bpy molecules, 19.5%
(calcd 20.8%); the second at 542–663�C is ascribed to decomposition of the other two
bpy ligands, 10.1% (calcd 10.4%), respectively. For 2, TGA shows that chemical
decomposition starts at 435�C and ends at 752�C with weight loss of 19.7%, equivalent
to loss of organic ligand (calcd 19.2%) (see figure S3).

The infrared spectra of 1 and 2 (see figures S1 and S2) recorded between 4000 and
400 cm�1 exhibit two strong bands in the 750–960 cm�1 range associated with
vsym(M¼O) and vasym(M¼O) and a medium to strong intensity band in the
490–520 cm�1 region attributed to v(M–O–M) (M¼Mo, W). A series of medium
intensity bands in the 1000–1620 cm�1 range is associated with organic ligands. A broad
band at 3448 cm�1 for 2 is associated with the water of crystallization.

3.4. XPS and photoluminescence for 1

In the XPS spectrum for 1, figure 4(a) shows the shoulder peaks of 2p3/2 and 2p1/2
at 934.3 and 954.1 eV, respectively, suggesting the presence of CuI. Satellite peaks at
943.2 and 962.2 eV indicate that the compound also contains CuII [12]. The XPS
spectrum of Mo for 1 [figure 4(b)] displays four partially overlapped peaks, and
curve fitting gives positions of these four peaks at 231.2 eV (a), 232.4 eV (b),
234.3 eV (c) and 235.5 eV (d), ascribed to MoV3d5/2, MoVI3d5/2, MoV3d3/2 and
MoVI3d3/2, respectively [13]. These results further confirm the valence of copper and
molybdenum.

The emission spectrum of 1 in the solid state at room temperature, depicted in
figure 5, exhibits mild blue fluorescent emission bands at ca 390 nm upon excitation at
ca 246 nm. It is assigned to (CuI)-to-ligand charge-transfer (MLCT) band [d10-�*],
according to the literature [14]. The fluorescence indicates that 1 may be a candidate for
photoluminescence materials.

3.5. Magnetic property for (2)

The magnetic behavior of 2 was studied between 2 and 300K at a field of 1000Oe; the
thermal variations of �MT and 1/�M are displayed in figure 6. The �MT curve exhibits
continuous decrease from 3.42 cm3mol�1K at 300K to 1.04 cm3mol�1K at 5K,
characteristic of antiferromagnetic interactions among CuII ions. However, the curve
increases a little below 5K, indicating a very weak ferromagnetic interaction exists in 2

at lower temperatures. Above 20K, the magnetic susceptibility of 2 follows the Curie-
Weiss law, �M¼C/(T��) (C¼ 3.60 cm3Kmol�1, �¼�39.71K), illustrating predomi-
nantly antiferromagnetic coupling between CuII centers.

Since WVI (5d0, S¼ 0) ions do not possess a magnetic moment, they do not contribute
to the bulk properties; the magnetism of 2 may be attributed solely to the presence of
CuII ions (3d9; S¼ 1/2) which reside on chains of the compound. According to the
crystal structure of 2, the magnetic behavior may be due to superexchange interactions
between hexanuclear CuII clusters. Unfortunately, it is too difficult to fit the
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experimental magnetic data of the one-dimensional compound spin system using a
suitable theoretical model.

4. Conclusions

We report synthesis and characterization of two new decorated polyoxometalate
derivatives, [CuI(bpy)2]2{[Cu

II(bpy)]2PMoV3MoVI9 O40} (1) and H[Cu(bpy)(H2O)]
{[Cu(bpy)]4(PO4)2}{PW11CuO39} �H2O (2). 1 shows mild photoluminescence in the
solid state at room temperature and 2 has predominantly antiferromagnetic interaction
between CuII centers.
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Figure 4. (a) The XPS spectrum of Cu in 1. (b) The XPS spectrum of Mo in 1 and the fitting of it. The peak
positions from curve fitting: a 231.2 eV; b 232.4 eV; c 234.3 eV; d 235.5 eV.
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Supplementary materials

The IR spectrum (figure S1 and figure S2) and TG curves (figure S3) of 1 and 2, and the

wide survey XPS (figure S4) for 1, can be found in supplementary data.

Crystallographic data have been deposited in the Cambridge Crystallographic Data

Centre with CCDC No. 631873 for 1 and 633134 for 2. Supplementary crystallographic

data associated with this article can be obtained free of charge from The Cambridge

Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif
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Figure 5. The excitation and emission spectra of 1 in the solid state at room temperature.
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